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ABSTRACT 

It is shown that  a £oo-space with separable dual constructed by Bourgain 

and Delbaen has small Szlenk index and thus does not have a quotient 

isomorphic to C(w'). It  follows that  this is a £ ~ - s p a c e  which is the 

same size as co in the sense of the Szlenk index but  does not contain co. 

This has some consequences in the theory of uniform homeomorphism of 

Banaeh spaces. 

1. I n t r o d u c t i o n  

In 1980 Bourgain and Delbaen [BD] published a method of constructing £ ~ -  

spaces which produced examples with surprising properties. At the time one of 

the most interesting aspects of these spaces was that  they were the first examples 

of a separable space with the Radon Nikodym Property but not isomorphic to 

a subspace of a separable dual space. In this paper we are not concerned with 

this property of the examples, but instead with the fact that  these £~ - spaces  

fail to contain co and thus cannot be isomorphic to an isometric L:  (/~)-predual. 

(See [JZ].) Such spaces are not well understood and potentially provide a source 

of interesting examples. 

One of our motivations for considering these spaces was that  in [JLS] it was 

shown that  a £~ - s pace  with C(w ~) as a quotient is not uniformly homeomorphic 

to Co. Thus a natural  question is whether that  means that  the only / :~-space  

which is uniformly homeomorphic to co is co itself. One consequence of the results 
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proved here is to show that  there is more work to be done by showing that  there 

are l :~-spaces  other than co which fail to have C(w '~) as a quotient. 

If  the parameters  in the construction in [BD] are chosen properly, the dual 

of the space constructed is separable and therefore by [LS] is isomorphic to ~1. 

Our interest is in the w*-topology o n / 1  induced by the example. Because the 

example does not contain co it is clear that  this w*-topology is much different 

than that  induced by a space such as C((~), (~ < Wl, or by a space of affine 

functions. One difficulty is that  because the dual is only isomorphic to gl, the 

s tandard unit vector basis of el may not be contained in the extreme points of 

the unit ball. This property of isometric gl-preduals is heavily (and often implic- 

itly) used in many analyses of specific g~-spaces ,  e.g., [A3], [A4]. Thus some 

replacement for this approach is necessary. Also the definition of the example 

is given by constructing embeddings of finite dimensional g~c-spaces and thus 

infinite dimensional information must be extracted from this finite dimensional 

presentation. 

Our approach is to work with the w*-closure of the ~l-basis of the dual space as 

an image of a certain associated compact space with a convenient structure. The 

w*-closure of the ~?l-basis, C, is large enough to contain most of the important  

information about  the dual, since D = co =f= ~ll'll will contain a multiple of the 

unit ball. On the other hand, we do not have good information about the extreme 

points and the w*-topology of this set D. To overcome this problem we create 

this associated compact space and we work through the Choquet theorem and use 

special information about C which is encoded in the associated compact  space. 

In the next section we will recall the definition of the example as given in 

[BD] and we will show that  the natural coordinate functionals are a basis for 

the dual and are equivalent to the usual unit vector basis of ~1. In Section 3 

we develop an approach to computing the Szlenk index which allows us to move 

from information about  a subset of the dual to its signed convex hull. This 

approach may be useful for estimating the Szlenk index in other situations and 

thus we develop the ideas in a fairly general setting. As part  of this we introduce 

a notion of integration for ordinal-valued functions of a real variable. In Section 4 

we est imate the Szlenk index for each e > 0. In the last section we discuss some 

possible extensions of the method of construction given by Bourgain and Delbaen. 

We use s tandard notation and terminology from Banach space theory as may 

be found in the books [LTI] and [LTII]. We consider only Banach spaces over the 

real numbers although much can be adapted to the complex case. In Section 3 

we will need the Szlenk index, [Szl], so we recall the definition here. 
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Del~nition 1.1: Let X be a Banach space and let A c X and let B ~ X*. Given 

e > 0 we define a family of subsets of B indexed by the ordinals less than or 

equal to wl. 

Let P0(e, A, B) = B. If P~(e, A, B) has been defined, let 

(1.1) Pa+t(~,A,B) = {b ¢ B :  there exist (an) C A,(bn) C P~(~,A,B) 

such that  w* lim bn = b, lim bn(an) >_ e, w lira an =- 0} .  

If c~ is a limit ordinal, 

P~(c, A, B) = A PZ(e, A, B). 
f~<a 

Let rl(e, A, B) be the smallest ordinal a such that  P~(e, A, B) = 0. 

Usually B is a w*-closed subset 6f Bx* and A is Bx,  where Bx* and B x  are 

the unit balls of X* and X,  respectively. If X* is separable, then rl(e , A, B) is 

defined and countable. Otherwise the convention is to define rl(e, A, B) = Wl if 

there is no countable ordinal for which the set P~(e, A, B) is empty. In this paper  

we will always assume that  A = Bx  so we will omit this from the notation and 

write P~(e, B). 

In the case A = B x  and X* separable it is often convenient to use a different 

definition of the Szlenk index, which yields a slightly different dependence on e, 

but in most applications gives equivalent results. In this case the definition of 

P~+I(e, A, B) is replaced by 

(1.2) P~+I(e,A,B) = {b ¢ B :  there exists (b~) C P~(e,A,B) 

such that  w* limb~ = b, and for all n 74 m, Ilbn - broil >_ ~}. 

We will refer to this second version of the Szlenk index as the modified Szlenk 

index. 

2. T h e  B o u r g a i n - D e l b a e n  spaces  

In this section we describe the construction of Z:o~-spaces due to Bourgain and 

Delbaen. We will depart  slightly from their notation and construction, but this 

is only a mat te r  of convenience. The approach is to build a subspace of g~  by 

defining a family of consistent embeddings of g~g into g~,  where (dn) is some 

sequence of integers tending to infinity rapidly. The sequence (dn) is defined 

inductively as are the embeddings. 

Fix two positive real numbers a, b and a number ,~ > 1 such that  b < a < 1 

and a + 2b)~ < ,k. We define dl = 1, d2 = 2 and assume that  dk has been defined 
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for k = 1, 2 , . . . ,  n. We define dn+l - d,~ to be the cardinali ty of the set of tuples 

( a ' , i , m , a " , j )  such tha t  1 < m < n, 1 < i < din, 1 < j < d n  and a ~ and a "  

are 1 or - 1 .  By enumerat ing the set of tuples by the integers k, d~ < k < dn+l, 

we can inductively define a map ¢ from N \ { 1 , 2 }  to the set of such tuples, 

(a ' ,  i, m,  a" ,  j ) .  

For each k E N, let e~ denote the k-th coordinate functional of go~, and e k the k- 

th  coordinate  element, i.e., the element of g~  which is 0 at each coordinate  except 

the k-th and 1 in the k-th. To define the embeddings, let En = [ek : k < d~] for 

each n and define for m < n inductively im,~: Em ~ En as follows. We define 

i l .2(tel)  = tel = e~(tel)el  for all t and suppose tha t  im,n has been defined for all 

m < n. To define an extension map from E~ into En+ 1 for each k, d~ < k < dn+l, 

we define a functional re(k) E E* by 

I * II $ . f¢(k) (x) = aa e~ (x) + ba ej (x - z,~sr ,~x) ,  

where 7rm: gee -4 Em is s tandard  projection and ¢(k) = (a', i, m, a",  j ) .  Then  

d n + l  

in'n+l(X) = X • E f¢(k)(x)ek 
k=d,~ + l 

for all x C En. Using this map we can define im,n+l(X) = in,n+l(im,n(X)) for all 

m < n and x E Em. In [BD] it is shown tha t  IIi.~,~[I --- -~ for all m < n, and thus 

considering l ~  as the dual of ~1, the w*-operator limit Pm of (im,,~Trr~)~=m+l 

exists for each m. (Pro(x) is just  the coordinate-wise limit of im,,~(x) for each x 

and each coordinate  is eventually constant.)  Notice tha t  we can now replace the 

definition of re(k) by 

f¢(k) (x) = aa'e* (x -- Pox) + ba"e; (x - Pmx) ,  

where P0 = 0. Rewrit ing this in dual form we have 

f¢(k)(X) = aa ' ( I  -- Pg)e*(x)  + ba" ( I  - Pro)el(x).  

We are interested in the spaces Xa,b = [Pm(Em) : m C I~, where a, b are fixed 

constants  as above. It  follows easily tha t  Xa,b is a / : ~ - s p a c e  and in [BD] some of 

the Banach space properties of these spaces are determined. If a = 1 the dual of 

Xa,b is non-separable and thus is not  of interest to  us here. T h u s  w e  a s s u m e  

t h a t  a < 1 u n l e s s  o t h e r w i s e  n o t e d .  We will also suppress the subscripts a, b 

f rom now on. 

Our  first task is to show tha t  the dual of X is isomorphic to ~1 in a very 

concrete sense. Notice tha t  for each m, Pm can be considered either as a map  
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from ~ into X or as a map  from X into itself. Thus the range of P ~  is contained 

in [e~ : k _< d,~], either in ~* or by restriction to X,  as elements of X*.  

PROPOSITION 2.1: Let  Q be the quotient map  from ~ onto X* .  Then (Q(e~)) 

is equivalent to the standard unit vector basis off1  and Q[e* : n • N] = X*. 

Proof." Because IIP~ll < A and for g • [e l ,e2 , . . .  ,ea,~] and k _< d~ ,  

P:~Q(4)(g)=ei(P~O))=ei(g), 

for each m, it follows tha t  

dm dm d~ 
• _ - 1  P *  * IIO~-~ak%llx. > A I[ m Q ( ~ a ~ % l l i e -  = A-111 ~j-~akegll~:o. 

k = l  k = l  k = l  

This proves the first assertion. 

For the second we will show tha t  the w*-closure of {Q(e*) : n E N} is contained 

in [Q(e*) : n E N]. It  then follows from the Choquet  theorem and Smulian 's  

theorem tha t  [Q(e*) : n c N] is w*-closed and hence equal to X*.  (See [A4], 

L e m m a  1.) 

e* Let x* be a w*-limit point of (Q k)keM, for some infinite subset M of N. We 

may assume tha t  limk~M Qe*k(Pm(er)) = x*(Pm(er))  for each r <_ dm and each 
I t  " m. Let ¢(k) = (a~,ik, ink, ak,Jk) .  We may also assume, by passing to a smaller 

' = a ' a n d  ' = a " f o r a l l k E M .  Consider (ink). index set if necessary, tha t  c~ k a k 

If s u p m k  = co, then ba"( I  - Pmk)e~k(X) = 0 for all x E Pm(Em)  for m <_ mk 

and thus any w*-limit point of (e*k)keM is a w*-limit point of (aa ' ( I - -P~)e*  k). If  
! * * s u p m k  = m < oc, then ik _< dm and (aa ( I - P d ) e i k  ) has a constant  subsequence. 

Thus  any w*-limit point of (e*k)kcM is of the form aa ' ( I  - P~)e* k + y* where y* 

is a w*-limit point of (ba"(I  - P*k)e~k). Notice tha t  in bo th  cases we have 

replaced looking for a w*-limit of (e~) = ( ( I  - P~))e*k) by looking for a w*-limit of 

( c ( I - P * k ) e ~ )  where I cl = a or b. Therefore we can find a convergent (absolutely 

summable)  series of terms of the form e j ( I  - P~)e~k  , lejl <_ a j - l ,  with limit x*. 

Actual ly  cj = +a~b j -~  for some s, 0 < s < j ,  and cj+l  = +ac 3 or cj+l = :Ebcj. 

Because ( I  - P*)(e*k) e [ e ; :  j e N], for all m , k ,  it follows tha t  x* ¢ [e~: j • N]. 
| 

Remark  2.2: In [GKL,GKL1] it is shown that  a Banach space which is uniformly 

homeomorphic  to co must  have Szlenk index which behaves as the Szlenk index of 

co. It  may  be possible to use the representation of the w*-closure of the el-basis 

contained in the previous proof to get a lower est imate on the Szlenk index and 
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thereby show tha t  the Bourgain-Delbaen  space is not uniformly homeomorphic  

to co. 

3. E s t i m a t i n g  o r d i n a l  i nd i c e s  

We begin by considering an abstract  system of derived sets of a metric space. 

Eventual ly  we will consider the specific cases where this is the usual topological 

derived sets or the Szlenk sets. 

Definition 3.1: Let K be a closed subset of a topological space (X, ~-) and let 

d(-, .) be a metric on X (which may not be compatible with the topology 7). A 

5 - s y s t e m  o f  d e r i v e d  s e t s  is a family, (K(~))~<~I, of closed subsets of K such 

tha t  

(1) there exists some ordinal/30 < wl such that  K (~) = 0 if a >/30, 

(2) if ~ < ~, then K (~) D K (~), 

(3) if/3 is a limit ordinal, N~<~ K(") = K(Z). 

(4) if xn E K (~) for all n E N and d(xn,Xm) >_ ~ for all n ~ m , n , m  E bl and 

~- - lim Xn = x, then x E K (~+1). 

For each a < wl let K d(~) = K (~) \ K (~+1). 

We are interested in determining how a Szlenk-like index of a set of finite posi- 

tive measures on K as elements of C(K)* behaves with respect to this derivation 

on K.  To measure this we introduce for each e > 0 and finite measure # on K 

the c-distr ibution function of #, rE,u, from (0, cx~) into [0,wl) but  with suppor t  

in (0, e]. 

To unders tand  the approach consider the following problem. Suppose tha t  g is 

a nice funct ion on (0, co) with values in the countable ordinals. Is there a sensible 

not ion of area under  the graph of g? 

Because it is not  at  all clear how to multiply real numbers  and ordinals, let 's 

take a discrete approach.  Fix e > 0. For an indicator function vl(0,n~) where 

n E i~, we want the c-area to be 7"n. Given an ordinal valued function g on (0, ~ )  

the e-area under  g should be the supremum of the ordinal sums V1 + - . .  + ~'k of 

c-areas of disjoint e-"rectangles" of width e and height Vi, i = 1, 2 , . . . ,  k, which 

fit under  the graph  of g. By a "rectangle" we mean a set of the form A × B 

where A is Lebesgue measurable and B is an interval. There is another  difficulty 

in this in tha t  the non-commuta t iv i ty  of the addit ion makes this sensitive to 

the order in which the rectangles are taken. To control this difficulty we need 

the order of the addit ion of the rectangles to reflect the values of the function 

g. To deal with this we use a geometric approach. We think of the ordinal 
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sum V1 + • .. + 7k as the value of a new function g~ on (0, e] with e-area under  g~ 

app rox ima t ing  the e-area under  g. To be an admissible approx imat ion  we require 

t ha t  for each x the  segments  in the rectangles above x be in an order  which 

respects  the order of the corresponding segments  under  the  graph  of g. More 

precisely, there  is an injective funct ion ¢ from {(x ,y)  : 0 < x < e,0 < y _< g ' (x)}  

into { ( x , y ) :  0 < x ,0  < y < g(x)} such tha t  if for some x, ¢ (x ,  yl)  = (s, t l )  and 

¢ (x ,  Y2) = (s, t2), then  t~ < t2 implies Yl < Y2. Thus  the region under  g'  is the 

image under  an order  preserving (in the second coordinate  only) r ea r rangement  

of a por t ion  of the region under  g. 

At first it m a y  seem tha t  we have drifted far from the original problem.  The  

connect ion to our p rob lem is tha t  intuit ively the e-Szlenk index does someth ing  

similar  to comput ing  the  c-area under  the dis t r ibut ion of a measure.  Before we 

int roduce precise formulat ions,  consider the measure  

# = 4  ~ +  5 ~  

in the dual  of C(w ~) and its posi t ion in 'the Szlenk sets of the ball of C(w~) *. 
Notice t ha t  if 1/2 < c < 3/4,  # is in Pl(e)  but  no higher Szlenk set. If  1/4 < e < 

1/2, # is in P2(e), and if e < 1/4, tt is in P~+3(e). Now consider the d is t r ibut ion 

funct ion 

g(t) = w i ( 0 , 1 / 4  ] + 1(1/4,1] 

and notice tha t  the e-area we have loosely defined above is the same as the e- 

Szlenk index of /z ,  i.e., the 3 /4 -a rea  is 1, the 1 /2-area  is 2 and the 1 /4-area  is 

w + 3 .  

Now we will begin making  these ideas precise. The  definition of the  

e-dis t r ibut ion funct ion is via an inductive procedure.  We will define a sequence of 

functions,  gl ,  g2,- - . ,  gn f rom (0, oo) into [0, Wl), and a non-increasing sequence of 
n 

ord ina ls  '~1, . . .  ,Vn; then  f~,u(t) will be Ei=l"/i +gn(t) for some n and all t < e. 

Fi rs t  we assume tha t  #(K  d(~)) ~ 0 for only finitely m a n y  a .  Let  ax > a2 > 

• .. > ak be the finite sequence of ordinals such tha t  Ai = #(K  d(~`)) > 0 for each 

i and # ( K )  = ~ i=1 /~ i  and define g~(t) = ai if z_~j=l ~ < t < ~-~j=l)~J, and 
k g]( t)  = 0 for t > ~ i = 1 A i '  

Before giving a formal  descript ion of the  induct ive procedure,  let us consider 

the following ia tui t ive idea for a construct ive approach to finding the c-area. 

Notice t ha t  the g raph  of gl is decreasing. We would like to take the  largest  

ordinal  j3 such tha t  gl(e) _> j3, i.e., gl(e),  let V1 = fl and define a new funct ion 

g2 as the  decreasing rea r rangement  of gl - 1(0,~]71. The  rectangle of width  e and 

height V1 is our first approx imat ion  to the area  under  gl and the region under  
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g2 is the remainder.  Next, we would apply the procedure to g2 to get a new 

ordinal ~/2 = g2(e) and let g3 be the decreasing rearrangement  of g2 - 1(0,e]3`2. 

Proceeding inductively, we would find (9i) and (3`i). Notice tha t  7i > 7i+1 and 

for only finitely many  i can we have equality. Thus  at some stage % = 0 and 

the procedure  produces nothing new. 

Because of some features of ordinal addition, it turns out tha t  this procedure 

may  produce  a little smaller function than  we would like. To avoid this it is 

necessary to require tha t  3'i = w~ for some /3 / and  thus 3 ' /may  be strictly smaller 

than  gi (e). In the formal procedure below we will also describe in detail a me thod  

for obta ining the decreasing rearrangement  which will allow us to extract  some 

addit ional  information for use later. The main step in the procedure is contained 

in the following lemma. Recall tha t  if 3  ̀and 13 are ordinals such tha t  ~ < 3  ̀then 

3  ̀- / 3  is the ordinal p such tha t  ~ + p = 7. (See [HI, page 74.) In the s ta tement  

of the l emma and below ,~ denotes Lebesgue measure. 

LEMMA 3.2: Suppose that  g and h are left continuous non-increasing functions 

from (O, oc) into [0, Wl) such that  there exists A < oo with g(t) = 0 = h(t) 

for all t > A, g(t) <_ h(t) for all t, and the range of each is a finite set of 

ordinals. Let  I = (a, b] be an interval on which g and h are constant  and let 

3` <_ g(t) for t E I .  Then i f  G and H are the non-increasing left-continuous 

rearrangements of  g -3"1 i  and h -  3"1i, respectively, then G(t) <_ H( t )  for all t 

and A({t :  g(t) + 1 _< h(t)}) _< A({t :  G(t) + 1 <_ H(t )}) .  

Proof: 

Because g and h are non-increasing, 

g(t) 
G(t) = g(t  + (b - a)) 

g ( t  - ( s  - b ) )  - 

and 

Let s = sup{t : g(b) - 7  < g(t)} and r = sup{t : h ( b ) - 7  < h(t)}. 

if t _< a or t > s 
if a < t < s -  ( b -  a) 
if s -  ( b -  a) < t _< s 

h(t) 
H(t )  = h(t  + (b - a)) 

h(t  - (r - b)) - 3` 

Observe tha t  G(t) <_ H( t )  for all t _< p = min(r, s) - (b - a) and 

i f t < _ a o r t > r  
if a < t < r -  ( b -  a) 
if r -  ( b -  a) < t _< r. 

A({t _< p :  g(t) + 1 < h(t)}) = ,~({t < p :  G(t) + 1 < H(t )}) .  

Similarly, if q ' =  max(r ,  s), 

A({t > q :  g(t) + 1 < h(t)}) = ,~({ t  > q :  G(t) + 1 _< H(t )}) .  
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To see tha t  G(t) <_ H(t)  for q > t > p we note tha t  if we do the same rearrange-  

ment  of g - 711 as for obta ining H from h - 71i ,  we get 

g(t)  if t < a or t > r 
G l ( t )  = g(t + (b - a)) if a < t < r - (b - a) 

g ( t - ( r - b ) ) - 7  i f r - ( b - a )  < t < r  

and clearly all of the conclusions hold for G1 in place of G. Now if G1 is not  non- 

increasing, we have two cases to consider. If r < s, then G(t) = G l ( t -  ( s -  r)) < 

Gl(t)  <_ H(t)  for s -  ( b -  a) < t _< s and G(t) = Gl( t  + ( b -  a)) <_ Gl(t)  <_ H(t )  
f o r r - ( b - a ) < t < s - ( b - a ) .  Also 

{t :G(t) + 1 _< H( t )}  

D { t :  Gl(t)  + 1 <_ H ( t ) , r -  ( b -  a) < t <_ s -  ( b -  a)} U ( s -  ( b -  a) ,s] .  

Thus  the conclusion holds in this case. 

I f r > s ,  t h e n G ( t ) = G l ( t + ( r - s ) )  < H ( t + ( r - s ) )  <_H(t) f o r s - ( b - a )  < 

t _< s, and G(t) = G l ( t -  ( b -  a)) <_ Gl(t)  <_ H(t)  for s < t _< r. In this case 

{t :G(t) + 1 _< H( t ) }  

D { t :  Gt( t  + ( r -  s)) + 1 <_ H( t  + ( r -  s ) ) , s -  ( b -  a) < t <_ s} U (s,r] 

and the conclusion holds here too. | 

T h e  next  l e m m a  follows from a finite number  of appl icat ions of L e m m a  3.2. 

LEMMA 3.3: Suppose that g and h are left continuous non-increasing functions 

from (0, ~ )  into [0, wl) such that g(t) = 0 = h(t) for all t > A for some A, 

g(t) < h(t) for all t, and the range of each is a finite set of ordinals. Let ¢ > 0 and 

3, > 0 such that V <- g(¢). Then if G and H are the non-increasing rearrangements 
of g - Vl(o,~] and h - Vl(o,~], respectively, then G(t)  < H(t)  for all t and 

A({t :  g(t) + 1 < h(t)}) < A({t:  G(t) + 1 <_ H( t )} ) .  

Proof: There  are a finite number  of disjoint, left-open, right closed intervals 

I j ,  j = 1, 2 , . . . ,  J ,  such tha t  1(0,,], g and h are constant  on each, and [.JjJ=l I j  = 

supp h. We may  assume tha t  the intervals are ordered so tha t  if j l  < j2, s E Ij~, 

and t E Ij~, then  s > t. There  is some smallest  index Jo such tha t  Ijo C (0, c]. 

Apply ing  L e m m a  3.2 to Ijo, g and h, we get rear rangements  gO) and h (1) of 

g -  Vlbo and h -  71bo , respectively. Next  we repeat  the process with I3o+1 , 

g(1) and h0)  to obta in  g(2) and h (2). Clearly, this process produces  the  required 

non-increasing rea r rangements  of g - 71(0,~] and h - 71(0,~] at  s tage d - j0 + 1. 

Because g(J) _< h (j) and 

A({t :  g(J)(t) + 1 <_ h(J)(t)}) <_ A({t:  g( j+l)( t )  + 1 < h(J+l)( t)})  
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for each j ,  the  required properties follow immediately II 

Remark  3.4: Notice tha t  if h is non-increasing as in Lemma 3.3 and p is an 

ordinal such tha t  p-  w < h(e), then h - pl(0,~] = h. Thus if too small an ordinal  

is chosen, there is no effect. 

The  next proposi t ion will enable us to define the e-distribution. Below we use 
n 

summat ions  of ordinals with the unders tanding that  ~ i = 1  7i = 71 + 72 + " "  +')',~ 

in tha t  order. 

PaOPOSITION 3.5: Let e > 0 and let g0 : (0, ec) --+ [0, wl) be a left continuous, 

non-increasing function with range a fn i te  set such that for some to < oc, go(t) = 

0 for all t > to. Then there exists a finite sequence o f  left continuous, non- 

increasing functions (gi)~--1 from (0, o0) into [0, wt) and a non-increasing sequence 

of ordinals ~-  1 ( ~ i ) i =  0 SUCh that for each i < n and a < Wl, 

/~ ({ t  : g i + l ( t )  = oL}) = /~ ({ t  : gi(t) --7il(o,e](t) = a } ) ,  

i.e., gi+ l is a decreasing rearrangement of gi - 7i1(0,~], 7i = w~' for some/3i,  and 

gn( t ) = O, for all t >_ e. 

Moreover, if  go and ho are two non-increasing functions as above, go (t) <_ 

ho(t) for all t, and (gi)i=l, n-1 h m m--1 n (~i)i=1 , the corresponding ( ~ ' i ) i = 1  ' and ( i ) i = 1 '  a r e  
n - 1  m--1  

sequences of functions and ordinals produced, then ~ i = l  "}'i + g~ (t) < )-~i=1 rh + 
n--1 

hm(t), for all t <_ e. Further, if  A{t : go(t) + 1 _< h0(t)} > e, then Y~i=l 7~ + 

gn(e) + 1 <_ hm(e). 

Proof'. The proof  proceeds by construct ing inductively the sequence (gi). In 

order to prove the moreover assertion we will work with ho at the same t ime and 

produce the corresponding sequence (hi). 

Suppose tha t  we have gi and hi, 1, 2 , . . . , k ,  such that  gi <_ hi for each i. If  

gk(e) = 0, the construct ion of the sequence (gi) is complete. If not  let /~k be 

the largest ordinal /3 such that  w z < gk(e). Let g = gk, h = hk, 7 = wZk, 

and I = (0, el. Applying Lemma 3.3 we let gk+l = G and hk+l =- H be the 

decreasing rearrangements  of g k - %  1i and hk--Tk 1i such tha t  G <_ H.  Moreover, 

A({t :  gk(t) + 1 < hk(t)}) _< ~ ({ t :  gk+l(t) + 1 _< hk+l(t)}).  

Notice tha t  if hk(e) _> % • w, hk - ~'kli = hk. Thus  if this occurs for some k, 

hk = hi for all i, k < i < n, and 

k-1 i-1 

E ~J + hk(e) > E 7j + gi(e) + 1 
J J 
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for each i. If  hk(c) < Vk " w, for all k < n - 1, then each step of the const ruct ion 

of (gi) is also a step in the construct ion of (hi) with ~Tk ---- 7k. Clearly, 

i - -1  

j : n  

for i -- n, n + 1 , . . . ,  m. This completes the proof  of all of the conclusions except 

for the final assertion in the case hk (c) < 7k ' w. 

Because A({t : gn(t) + 1 < ha(t)}) _ c, at step n either h~(t) = 0 for all t > c 

and ha(t) > gn(t) + 1 for all t, 0 < t < c, or ha(t) > 0 for some t > c. The  

first case satisfies the conclusion of the proposition. In the second case observe 
i i - -1  

tha t  for each i, E j = I  ~J -~ hi+l(c) > E j = I  7j -~ h~(c). Because ha(t) > 0 for 

some t > c, it follows tha t  there is a largest ?~n : ~d~n > 0 such tha t  7/n < hn (e). 

Because ~/n > gn(c), the proof  is complete. | 

We now introduce terminology for some of the ingredients of Proposi t ion 3.5 

and its proof. 

Definition 3.6: Suppose g is a non-increasing left-continuous function from 

(0, oo) into (0, wl) and ~ > 0. If V ~ g(c) and f is the decreasing rearrange- 

ment  of g - ~l(0,~] then h = ~1(0,~1 + f will be said to be an e - c o m p r e s s i o n  of 

g (by 7). 

Let 

C(g, c) = sup{H(c) :  there exist non-increasing left-continuous simple functions 

(hi)~n_-l, hi  ~ g, hi+l is an e-compression of hi, H = hn}. 

For a positive finite measure # on K let g(t) = sup{a  : # ( K  (a)) >__ t} for all t > 0 

and define C(#,  c) = C(g, e). (We let the supremum of an empty  set of ordinals 

be 0.) We will call g the d e r i v e d  h e i g h t  of # and C(g, c) the e - a r ea  under  g. 

It  is not  hard to see tha t  the procedure used in the proof  of  Proposi t ion  3.5 will 

produce the value of C(g, c) if g is simple. In tha t  case with gj and Vj as in the 

proof  we let h~ = ~ 1 1  vjl(0,~] + g~. It  is impor tan t  in achieving the supremum 

tha t  for each j ,  7j is of the form w ~j. This avoids lowering the sum by taking 

the wrong order, e.g., 0) 2 + 1 and ~ sum (in tha t  order) to w2 + w  but  w2, w, and 

1 sum to W 2 -~- 03 ~- 1. 

Observe tha t  for a measure # as in Definition 3.6, if for some t, g(t) = 
a,  # ( K  (")) __ t. Also, if ( t , )  is an increasing sequence of positive numbers  

with limit t and g(tn) = an  for each n, (an) must  eventually be constant .  
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Thus  # ( L J K  (~n)) = lim/~(K (~")) > l imtn and g(t) = limg(tn), i.e., g is left- 

continuous. 

Also notice tha t  if g and h are non-increasing functions as in the s ta tement  of 

the proposi t ion but  not necessarily simple, then the final conclusion of Proposi-  

t ion 3.5 still holds, i.e, C(g, e ) + l  < C(h, e). Indeed, if gl is a simple function with 

gl 5 g and A is the set where h(t) >>_ g(t) + 1, then gl + 1A ~ h. It follows easily 

tha t  there is a non-increasing simple function hi such that  gl + 1A _< hi < h. 

Thus  C(gl, c) + 1 < C(hl, ~) < C(h, e). Taking the supremum over all such gl 

gives the result. 

Example 3.7: If  we return to our previous example 

g(t) = W1(o,1/4 ] + 1(1/4,1 ] 

and let e = 1/2, then C(g, 1/2) = 2 because hi = g and 

H -- h 2 ~- co1(o,1/4 ] ~- 2 • 1(1/4,1/2 ]. 

If e = 1/4 then C(g, 1/4) = co + 3. Indeed, hi = g, 

h2 = (co + 1)1(0,1/4] + 1(1/4,3/4], 

h3 = (co -t- 2)1(0,1/4] + 1(1/4,1/2], 

H = h4 = (co + 3)1(0,1/41. 

Remark  3.8: The definition of c-area can be adapted to accommodate  different 

values of e as in the definition of summable  Szlenk index, [GKL] or [KOS], bu t  

one must  use the differences instead of the c-compressions. Thus one would begin 

with g and w ~ -- 1 and let gl be the decreasing rearrangement  of g -  1(0,~1], g2 be 

the decreasing rearrangement  of gl -1(0,~2], etc. The (el, e2 , . . . ,  e,~)-area is zero if 

gi - 1(0,~+1] is not  non-negative for some i. This notion of summable  Szlenk index 

seems to be the same as saying tha t  there is a constant  K such tha t  for every e > 

0, the e area or equivalently the Szlenk index is at most  [ K / e ] + l ,  where [.] denotes 

the greatest  integer. (See [KOS] where this latter proper ty  is called propor t ional  

index.) 

Our  next  task is to show tha t  there is a relation between the derivation on K 

and a "Szlenk" derivation on the probabili ty measures on K.  Below the weak*- 

topology on the probabil i ty measures on K is tha t  inherited from C(K)*. 
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Definition 3.9: Suppose  tha t  M is a set of probabi l i ty  measures  on K and let 

(i,e > 0. Define M(e,(i)(°) = M.  For each a < col, define 

M(e,  (i)(~) = { p  : there exists (#n)n°%_l C M(e,  5)(~) and a sequence 

A ec of closed subsets ( n),~=l of K such tha t ,  pn(An) > e 

for all n, w* l impn  -- p, d(A,~,Am) >_ 5 for all n ¢ m } .  

If /3 is a limit ordinal,  define M(c,  5)(Z) = f'l~<Z M(e,  5) (~). 

Notice t ha t  the definition is at  least superficially more  restr ict ive than  tha t  of  

the  e-Szlenk subsets  of M in tha t  from the Szlenk index definition we would only 

have disjointness of the sets (An) not separat ion by 5. Indeed, if (#n) is a w* 

convergent  sequence of probabi l i ty  measures  and (f~) is a weakly null sequence of 

(without  loss of generali ty) posit ive continuous functions such tha t  f fn dpn >_ ~, 

then  given e' < e, for a sufficiently small p > 0, we can let A'~ = {k : fn(k) > p} 

for each n and by passing to a subsequence if necessary, let An = A'n \ Uk<n Ak, 

to obta in  disjoint sets such tha t  fA~ fn d#n > e', for all n. Essential ly this is 

the  same  as saying tha t  the Szlenk definition detects  the non-uniform absolute  

cont inui ty of a set of measures.  (See [A1] and the proof  of Corol lary 3.11.) 

PROPOSITION 3.10: Let ~, (i > 0. I f  M is a subset  o f  the probability measures  

on a compact set  K with (i-system of  derived sets { K  (~) : c~ < col} and # C 

M(e, 5) (~), then for every e' < e, C(# ,  e') _> c~. 

Proof: The  proof  is by induction on a .  The  main  step is to prove the following. 

CLAIM: I f  (Pn)ne°=l C M with C(#n,e') >_ ~ for each n, w * l i m # n  = #, and 

A ~ ( n)n=l is a sequence of closed subsets of K such that #,~(An) > e and d(An, Am) 
>_ (i for all n ¢ m, then C(#,  e') >_ c~ + 1. 

Because the sets K (z) are closed for each/3 and #~ _> 0, 

lim sup # n ( K  (~)) < # ( K  (~)) 

for all /3. Therefore  if h,~ is the derived height of #n for each n and h is the  

derived height of #, then  h(t) >_ l i m s u p h n ( t )  for all t. Given p > 0 we can find 
k 

C~l < a2 < . . .  < ak such tha t  Y]i=t#(Kd(~d) > 1 - p .  (Let a0 = 0.) Now 

consider (ii+ 1 = l im sup ttn ( ( K  (~) \ K(~ '+ 1)) N An). By passing to a subsequence 

we m a y  assume tha t  this limit exists for each i and so does l i m # n ( K ( ~ d ) .  If 

k,~ E ( K  (~d \ K (~+1)) ~ A~, we know tha t  any limit point  of (k~) is in K (~+1). 

Therefore,  if g is a continuous function such tha t  1K(~+,) < g _< 1 and p'  > 0, 
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then ( i t n , g )  _> #n(K ("'+')) + i t , ( K ( " ' ) ' - K  ("~+1)) N A n ) -  p' for n sufficiently 
large. Consequently, 

i t (K ("~+1) \ K(~',+~)) + it(K ("'+')) = #(K("'))  

>_ lim sup #~ (K (a~+')) + 6i+ 1. 

Rearranging, we get 

i t(K (~'+~)) - l imsupit~(K ("'+1)) _> 5i+1 - #(K (~'+~) \ K("'+~)). 

Because 
k k 

E 5~ = E lim sup#,~((K(~-l) \ K ( ~ ) ) N A ~ )  
i = 1  i = 1  

> lim sup #n (An N (K "- K(ak))) 

> lim sup #n(An V) K)  - pn(A~ M K (~k)) 

> c - i t(K (~k+l)) > c - p, 

k - 1  k - 1  

E #(K(~'+')) - l i m # ~ ( K ( ~ + ' ) )  -> E (~i+1 -- #(K (~'+1) \ K (~'+1)) _>¢ - 2p. 
i = 0  i=O 

Clearly h(t) > l imsuphn(t)  + 1 for t such that l im#n(K(" '))  < t < #(K(~')). 

Thus 
~({t:  h(t) >_ limsuph,~(t) + 1}) >_ e - 2p, 

for every p > 0. It follows there is some n such that $({t : h , ( t ) + l  _< h(t)}) > d. 
Proposition 3.5 implies that C(hn, e') + 1 <_ C(h, e'), proving the Claim. 

The Claim proves the induction step. Indeed, if it E M(e, 5) (~+1) then there is 

a sequence (itn) C M(e, 5) (~) with w*-limit it as in the Claim. By the inductive 

assumption C(i tn,d)  > ~ and thus the Claim gives C(#,e')  > a + 1. 

If (~ is a limit ordinal, let (am) be a sequence of ordinals converging to a. If 

it E M(e,  5) (~), then it E M(~,5) (~)  for all n. By the induction hypothesis 

C(it, d)  > c~ for all n. Therefore C(/~, e') > a. I 

The next result is known, e.g., IS], but the apparatus we have constructed gives 

an easy proof. 

COROLLARY 3 . 1 1  : The e-Szlenk index of the unit ball o[ C(w ~ . k )* is w ~ [k/e] + 1. 

Proof." We take the 5-system of derived sets to be the usual topological derived 

sets of [1,w ~. k] U -[1,w ~. k] (the disjoint union of two copies of [1,w ~. k]), the 

metric to be the discrete metric d(x, y) --- 1, for x ~ y, and 5 = 1. If # is any 
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probabi l i ty  measure  on [1~ w ̂ t- k] U - [1 ,  w ~- k], the  derived height can be a t  most  

W ~ .  k at  each point.  Thus  C(#, e) < W ~[k/e]. 
Now consider the  definition of the Szlenk subsets  of the ball of C([1, w ~ • k])*, 

P~(e'). If # E P~+l(e') then  there  is a sequence of measures  (#~) which converge 

w* to # and  a sequence of norm one continuous functions (f~) converging point-  

wise to 0 such t ha t  l im(#n,  f~)  > e ~. Let  ¢" < e'. I t  follows tha t  there  are disjoint 

sets (An)neK for some infinite set K C N such tha t  I#~I(An) ~ e". Except  for the 

absolute  values this is precisely the condit ion in Definition 3.6. We can e l iminate  

the  absolute  values by considering measures  on [1, w ~- k] U - [1 ,  W r .  k]. (Replace 

# by # '  where  # ' (A)  = # + ( A  N [1,W "y- k]) + # - ( - ( A  N - [ 1 , w  ~ .  k])).) Thus  if 

# E P~(d ) ,  then  # E M(1 ,  ~")(~), where M is the set of probabi l i ty  measures  on 

+[1, w ~. k]. Thus  to compu te  the Szlenk index we may  apply  Propos i t ion  3.10 to 

get t ha t  p E P~(e ' )  implies tha t  C ( # , e " )  > a .  Therefore  a <_ w'Y[k/e ''] for every 

~" < ¢~, and the  c ~ Szlenk index is at  most  H'Y[k/¢ ~] + 1. I t  is easy to see tha t  

5,~.k E P~[k/~'], comple t ing  the proof. I 

4. T h e  S z l e n k  i n d e x  o f  t h e  B o u r g a i n - D e l b a e n  s p a c e  

T h e  p roof  of Propos i t ion  2.1 suggests the following approach to represent ing 

(non-uniquely)  the w*-closure of the basis {e~ : k C N}. Recall  t ha t  a tree is a 

par t ia l ly  ordered set (T, _<) such tha t  each initial segment ,  {y : y _ x} for x E T,  

is well-ordered and finite. Let  T = Un~_0{0, 1} ~, the rooted b inary  tree (ordered 

by extension) wi th  root  the e m p t y  tuple,  0 ,  and let 

W = ({0, a , - a , b , - b ,  1} x {w. m + k :  m , k  C N U {0}}) U {oc}, 

the one-point  compact i f ica t ion of {0, a, - a ,  b, - b }  x [1, w2). (In this topology any 

sequence in W of the form (c,,w • rn, + ki), with l i m m i  = c~, has limit c~.) 

Let  K be the space of all functions from T into W in the topology of pointwise 

convergence.  We have tha t  K is compac t  by the Tychonoff  theorem.  Each basis 

vector  e~ in X* can be associated to a point  gk in K in the following way. 

Let  gk(O) = (1, k) and if gk(61 ,52 , . . . ,  6n) has been defined to be  (c,w. m + 6) 
and ¢(g) = (a~,i,m',oJ',j), let 

(a'a,w. re+i )  if 6n+1 = 0, 
gk(51 ,5~: . . . ,6~+1)  = (a"b,w-max(m,m')  + j )  if 6~+1 = 1. 

If g<_ 2, 

gk(51,52,...,hn+1) = (O,H. m). 
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Define O(gk) = e~, for all k. 

We need some nota t ion  to conveniently refer to the pieces of W. For (c, w.rn+j) 

we define three  functions which ext rac t  the essential parts:  V(c, w .  m + j)  = c, 

Q(c,w.  m + j)  = rn, and R(c ,w.  m + j)  = j .  For a node A / o f  the b inary  tree of 

length L(Af) = n and t < n define the t - th t runca t ion  by I(Af, t) = (51 ,52 , . . . ,  St) 

if Af = (51,52, . . .  ,ha). We define the evaluation of an element x of X by an 

element  f E K at  a node Af = (51,52, . . .  ,hn) by 

Now suppose  tha t  x E P~X for some s and f is the pre image of e~ for some k, 

i.e., f = gk. For each node B = (5i) of T there is smallest  index n = n(B, f )  such 

t h a t  R ( f ( I (B ,  n))) < d~. (Of course every node with  this initial segment  yields 

the same index.) 

PROPOSITION 4.1: Let f = gk, i.e., O(f) = e~, for some k and x E P~X for some 

s. I f  {N~} is a max ima /  collection of incomparable nodes such that L(A/'i) < 

n(B, f )  for any  branch B with N'i as an initial segment,  then the collection is 

finite and  e~(x) = ~i( f ,N'~,  x). 

Proof:  Observe  t ha t  i fAf is any node with  L(AY) < n(/~, f ) ,  f(jV') = ( c , w . m + j )  

and ¢( j )  -- ( a ' ,  r, m ' ,  a " ,  q), then j > d~ and 

(4.1) (I - P ~ ) e ; ( x ) = a ' a ( I  - P ~ ) e : ( x ) + a " b ( I - P ~ , ) ( I  - P ~ ) e ~ ( x ) .  

Note t ha t  (I - P~, ) ( I  - P~) = I - P~ax(m,m')" If (f ,  Af, X) = C(I -- P~)e;(x) ,  

then  

(4.2) 

( f , A / ' , x ) = e ( ~ ' a ( I - P * ) e ; ( x ) + a " b ( I - P ~ a x ( , ~ , m , ) ) e ; ( x ) )  

= (ca 'a ) ( I -P* )e : ( x )+(ca"b ) ( I -P~ax ( ,~ ,m , ) ) e~ (x )  

= ( f , . h f + ( O ) , x ) + ( f ,  fl/'+(1),x), 

where ( .)+(-.)  denotes  the concatenat ion of the tuples (.) and (--). Therefore  we 

can prove the  formula  by  induction on the set of nodes as follows. We enumera te  

the  nodes  of the  b inary  tree so tha t  all nodes of a given length are labeled before 

any  node  of a longer length. Observe tha t  the formula is obvious if we have only 

the  node  0 since 

(f,  O,x) = (I - P~)e*k(x) = e*k(X ). 
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If this is the maximal  collection, we are finished. If not,  () is the first node in 

the enumerat ion and we replace it by the two node collection { (0), (1)}. Formula 

(4.2) immedia te ly  gives the result if this is the collection of nodes. Otherwise 

we consider the next node in the enumeration.  If it is in the collection {Afi}, we 

move on in the enumeration;  if not, we apply the formula (4.2) to replace the 

node by the two nodes immediately below. Note tha t  because we began with e~., 

with k _< d~ for some r, the integer coordinates of ¢(k) are smaller than  dr-1.  

I terat ing,  we see tha t  there can be only finitely many nodes in the collection {Af/}. 

Continuing in this way we eventually reach each node in the original collection 

and the formula follows. | 

Our  next task is to show tha t  if {gk} is the set of representatives in K of the 

basis elements {el.} defined above, then the mapping  0 described above extends 

to a continuous map  from {gk} into X*. 

Before we proceed, let us note tha t  because of the role of m = Q(gk(N')), once 

there is a node No in a branch tha t  contains 0, 

R(gk(M)) < Q(gk(N'o)) 

for all nodes M which are descendants of No. Hence there can be only finitely 

many  nodes on the branch containing Af0 at which V is non-zero. 

PROPOSITION 4.2: The m a p  0 extends to a continuous function from {gk} into 
{ek}. 

Proof: Suppose tha t  (gk)keM has limit f in K.  We have tha t  (gk(Af)) converges 

for each node Af. gk(Af) = (ck,w'mk +jk) for each k. If (ink) is not  bounded  

then l immk = w and limit of (9k(.M)) is ~ .  Assume tha t  this is not  the case. 

Because for each k, ck and mk must  be one of a finite set of values it follows 

tha t  (ck) and (ink) are eventually constants  e and m, respectively. If (gk(Af)) 

is not  eventually constant  then limkcM jk = w and the limit is (c,w. (m + 1)). 

Therefore for each node we have three possible situations. 

(1) (9k(N')) converges to oo. 

(2) (gk(N')) is eventually constant.  

(3) (gk(N')) converges to (c,w. (rn + 1)). 

Consider in each case what  happens on the nodes below. 

In the first and second cases by (4.1) the same must  be t rue for each node 

below Af. In the third case we must  examine (¢(jk)) as in the proof  of the 

Proposi t ion  2.1. Observe tha t  (gk,Af, x) = c k ( I -  P*k)e~k(X) for some con- 

s tant  ck and consider the same three cases. In the first case (ink) diverges to 
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cx~ and therefore l i m c k ( I -  Pmk)X = 0 for every x E Us PsEs.  Consequently, 

w* l imck ( I  - Pmk)e~ = O. 

In the second case ((gk, Af, x)) is eventually constant and so is (ck ( I - P m k  )e~: ). 

In the third case (ek) and (mk) are eventually constant, and consequently, so 

is (f,  iV'+(0), x). 

To determine the limit of O(9k) we let {Af/} be the sequence of nodes such 

that  f(Afi) # cx~, R(f(N'~)) ¢ 0 and R( f ( I (A f i ,  L(A/'i) - 1)) = 0. By definition 

this is a set of incomparable nodes. Define y* (x) = ~ i ( f ,  At/, x). We claim that  

w* limO(gk) = y*. Indeed the nodes we have described above are precisely the 

nodes corresponding to the terms that  appear in the series representation for a 

limit point of O(9k ) determined in the proof of Proposition 2.1. | 

Let C = {e~}. 

PROPOSITION 4.3: For each e > 0 the e-Szlenk index ~(e, C) is ~nite. 

Proof: Fix e > 0. Find N such that  
o o  

a '  sup II(I - Pm)e*kll < ~/4. 
i=N m,k 

Suppose that  (x~) is an e-separated sequence in C and 

x* k = E ck , j ( I  -- Pmk 
j = l  

x---~ N -  1 //- 
a n d  lek,~l ___ at for all j .  Then Yk = 2...,5=1 ckdk - Pm~.j)e~k. j, k = 1,2, . . ,  is 

an e/2-separated sequence. Let (zk) be the sequence of preimages of (xk) corre- 

sponding to the series representation above. (O(zk) = xk for all k.) Because the 

(Yk) is e/2 separated it follows that  the sequence of restrictions (zk [{H:L(~C)<N}) 

is distinct. Now observe that  the set of maps from a finite set G into W 

in the topology of pointwise convergence is a metric space homeomorphic to 

[1,w2. card c ( 6 .  card G)]. Therefore the e-Szlenk index is at most 2 N+I + 1. 

| 

COROLLARY 4.4: For each e > O, ~?(e, B x . )  < w. Consequently, C(w ~) is not  

isomorphic to a quotient of  X .  

Proof." It is sufficient to consider D co 4- {e k : k C N} w* = * in place of Bx*.  By 

the Choquet theorem we can associate each element x* of D to some probability 

measure #z* on 

c = +{e~ : k c N} w"  
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Observe that  if (x*) is a w*-convergent sequence in D and (xn) is a weakly null 

sequence in the unit ball of X such that  l imx*(x~) > q ,  then there exist an 

infinite subset L of N and e/4 norm separated subsets (An)nEL of C such that  

ttx~,(An) > el/2 for all n E L. 

Now we consider the modified Szlenk subsets of C, {P~(el/4, C) : a < col}, as 

the &system of derived sets with a = q / 4  and let 

M = {# : p is a probability measure representing some x* E D}, 

e = q / 2  and a = q / 4 .  By Proposition 3.10, if # E M(e,a) ('~) then C(lt, q/4) >_ 
a. However, C(tt, q / 4 )  must be finite by Proposition 4.3. | 

Remark 4.5: From the proofs of Proposition 4.3 and the corollary, the e-Szlenk 

index can be estimated from above. Recently Haydon [Ha] has shown that  the 

Bourgain Delbaen spaces are hereditarily ~p for some p which depends on a and 

b. From this one can get a lower estimate on the Szlenk index. Using results in 

[GKL, GKL1] it follows that  these spaces are not uniformly homeomorphic to Co. 

Remark  4.6: After reading an earlier version of this paper  I. Gasparis communi- 

cated to us another method of showing that  the e-Szlenk index of the Bourgain-  

Delbaen space is finite without determining the behavior of the index. With his 

permission we include a sketch of the argument here. 

rl(e, Bx*) > w for some e > 0 is equivalent to the statement that  C(w ~) is a 

quotient of X.  (See [An].) It  is well-known that  C(w ~) has gl as a spreading 

model of a weakly null sequence. If C(w ~) is a quotient of X,  then X also has a 

weakly null sequence with spreading model ~1- This would imply that  the basis 

of X has blocks that  are equivalent to the basis of g~ for all n. However, the proof 

of Lemma 5.3 of [BD] or Proposition 3.9 of [B] shows that  this is impossible. 

5. F i n a l  r e m a r k s  

The arguments given above suggest that  there is considerable flexibility in 

the construction given by Bourgain and Delbaen. One possibility is to replace 

the binary nature of the construction by one which allows a greater number 

of terms. Thus in place of (+a,  +b) one might have a collection of finite 
j N sequences (an)n=l, j = 1, 2 , . . . ,  J .  Then the new functionals might evaluate as 

N k * • an%, (ZnrCnX-*,~-lrc,~-lX), where (sn) is a sequence such that  dn-1 < s,~ < 
dn for each n and d~ is the cardinality of the set of coordinates defined by the 

n-th stage of the construction. Some care would need to be taken to preserve the 

boundedness of the iterated embeddings. It  would be most interesting if the set 
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of finite sequences could be made to vary and if the sequence of finite segments 

of the integers could be replaced by finite branches of a tree. This might be an 

approach to answering the following question. 

QUESTION 5.1: Given a countable ordinal a, is there a EGo-space X~ such that 

X~ does not contain co and X~ has Szlenk index oS ~ ? 

One other observation is that  much of what we have done still works if a -- 1. 

Wha t  does not work is the argument in Proposition 2.1 to find the convergent 

series for each element of the dual. Thus the corresponding set K is more com- 

plicated and seems to include a Cantor set of well separated points. A thorough 

analysis of this case might yield some additional information about  the first ex- 

ample in [BD]. Finally, note that  we have not used the extra conditions imposed 

on a and b in [BD] to get a somewhat (hereditarily) reflexive example. 
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